Section Overview

Polynomials

Lesson 12-1

Why? Polynomial expressions are the building blocks of polynomial functions, which are used to model, represent, and analyze many real-world situations.

A **monomial** is a number, variable, or a product of numbers and variables with exponents that are whole numbers.

examples	
Monomials	2n, x ³ , 4a ⁴ b ³ , 7
Not Monomials	$p^{2.4}, 2^x, \sqrt{x}, \frac{5}{g^2}$

Polynomials		
Monomial (1 term)	10 <i>ab</i> ²	
Binomial (2 terms)	9 <i>x</i> ² + 2	
Trinomial (3 terms)	$2a^2 + 3a - 5$	

The **degree** of a polynomial is the degree of the term with the greatest degree.

$$4x^2 + 2x^5 + x + 5$$
Degree 2 Degree 5 Degree 1 Degree 0

Degree 5

Simplifying Polynomials

Why?) In order to solve polynomial equations, you need to know how to simplify polynomials.

Like terms have the same variables raised to the same powers.

Example:
$$5x^2y + 2xy^2 + 6x^2y + 7y$$

Like terms

To **simplify a polynomial**, add or subtract like terms. You may need to use the Distributive Property to simplify a polynomial.

$$2(3ab^2 - 6b) + 2ab^2 + 5$$

 $2 \cdot 3ab^2 - 2 \cdot 6b + 2ab^2 + 5$ Distributive Property
 $6ab^2 - 12b + 2ab^2 + 5$
 $8ab^2 - 12b + 5$ Combine like terms.

Lesson 12-2